KENDRIYA VIDYALAYA SANGATHAN BENGALURU REGION SET: 1

CLASS: IX SUMMATIVE ASSESSMENT II (MARCH) 2013-14 MAX.MARKS: 100 MATHEMATICS

TIME: $3\frac{1}{2}$ HOURS

	WARKING SCHEWIE	
	<u>SECTION:A</u>	MARKS
	1) (C) Infinitely many solutions 2) (D) 120 ⁰	EACH 1 MARK
	3) (D) $\frac{32}{3}\pi r^3$ 4) (A) 1	
	<u>SECTION:B</u>	
5)	Any two correct solutions	Each 1 mark
6)	Let the cost of note book= x , the cost of a pen = y	1
	Liner equation: x = 2y (or) x - 2y = 0	1
7)	Correct figure	1/2
	Since AC bisects LA and L C in rectangle ABCD, L 1 = L2 = L3 = L4 then AD =CD	1
	Thus ABCD is a square , so BD bisects LB as well as LD	1/2
8)	OM⊥BC ,BM = CM(1)	1
	$OM \perp AD$, $AM = DM$ (2) Perpendicular from centre bisects the chore	
	Subtracting (1) and (2) AM –BM = DM –CM , AB = CD	1
9)	Correct figure	1/2
	In II gm ABCD, LA = LC(1) opposite angles of a II gm ,	
	$LA + LC = 180^{\circ}$ opposite angles of a cyclic quadrilateral	
	$LA + LA = 180^{\circ} \qquad from(1)$	
	$2LA = 180^{\circ}$, $LA = 90^{\circ}$	1
	Therefore ABCD is a rectangle (in a II gm) one of whose angles is 90° , is a rectangle)	1/2
4.01		
10)	Radius of the cylindrical kaleidoscope =3.5cm	
	Height of kaleidoscope (h) = 25cm	1
	Area of chart paper required =curved surface area of a cylindrical kaleidoscope	
	$= 2\pi rh = 2 \times 22/7 \times 3.5 \times 25 = 550 cm^2$	1
11)	<u>SECTION:C</u>	1 0000
11)	Any two correct solutions	1 each
	Infinitely many , Through a point infinite lines can be drawn	½ each
12)	ABCD is II gm ,D C IIAB Transversal BD intersects them at B and D	1/2
12)	Therefore LABD = LBDC alternate interior angles	1/2
	In Δ APB and Δ CQD,	
	LABP = LQCD (since LABD = LBDC)	
	$LAPB = LCQD (Each 90^{\circ})$	
	AB = CD (OPP. Sides of a II gm)	
	Therefore $\triangle APB \cong \triangle CQD(By AAS)$	2
	AP = C Q (BY CPCT)	1/2
13)	Let BD Intersect EF at G	1/2
	In Δ DAB, E is a mid –m point and E G IIAB	
	Then G is the mid –point of DB (By converse of mid-point theorem)	2
	In ΔBCD , G is the mid-point of BD and GFIIDC	
	So, F is the mid-point of BC (By converse of mid-point theorem)	1/2

MARKING SCHEME

	-2-	
14)	BCED is a II gm , BD =CE and BDII CE	
	Ar(DBC) = ar(EBC)(1) (Having same base BC and between the same IIs)	1
	In $\triangle ABC$,BE is the median so ar(EBC) = $\frac{1}{2}$ ar(ABC)	1
	Ar(ABC) = ar(EBC) + ar(ABE) , ar(ABC) = 2ar(EBC) , ar(ABC) = 2ar(DBC) FROM (1)	1
15)	Given , to prove, correct figure	1
	Correct proof	2
16)	Construction of a required figure with correct measurements	3
17)	Perimeter of a floor 2(l +b) =260, l+ b = 130	1/2
	Surface area of four walls= $2h(l+b) = 2 \times 6 \times 130 = 1560m2$	1
	Cost of painting = Rs (1560x 9) = Rs 14040	1/2
	Values depicted are co- operation ,concern etc	1
10)	Median is average of 5 th and 6 th terms	1
18)	x+(x+2)	1 2
	$\frac{x+(x+2)}{2} = 63$, $x = 62$	2
<u> </u>		
19)	Arranging the data in ascending order	1
	Making table of class interval (11-20, 21-30 etc), tally marks and frequency	2
20)	i) More than 40 seeds =3 , probability = 3/5	1
	ii) 40 seeds in a bag = 0 , probability = 0	1
	iii) More than 35seeds =5, probability = 5/5 = 1 SECTION: D	1
21)	Table of three ordered pairs	1
21)	Plotting the points on graph and drawing the graph	2
	The line cut the x -axis at (6, 0) and y -axis at (0, 4)	1
		-
22)	2x + 9 = 0, $x = -9/2$ Or (-4.5), drawing number line on a graph and locating (-4.5) on it	2
	Equation in two variables is 2x + 0 .y + 9 =0	1/2
	Plotting points on a graph using three ordered pairs	$1\frac{1}{2}$
		1 ₂
221	Ciuch to prove construction correct figure	2
23)	Given , to prove ,construction correct figure proof	2
		2
24)	Correct figure	1/2
7	In $\triangle ABC$, F is the mid-point of side AB and E is the mid-point of side AC	
	So E F II BD (by mid-point theorem) , similarly ED II FB	
	Hence BDEF is a II gm , similarly we can prove that AFDE and FDCE are II gm s	1
	Since FD is a diagonal of II gm BDEF , ar(FBD) =ar(DEF)(1)	
	Similarly ar(FAE) = ar(DEF)(2)	
	ar(DCE) = ar(DEF)(3)	1
	From 1, 2 and 3	
	ar(FBD) = ar(FAE)= ar(DCE) =ar(DEF)	
	Therefore ar(ABC) = 4 ar(DEF)	
	$\Rightarrow ar(DEF) = \frac{1}{4} ar(ABC)$	$1\frac{1}{2}$
25)	LCED + LCEB = 180 ⁰ (Linear pair)	
-	$LCED + 130^{\circ} = 180^{\circ}, LCED = 180^{\circ} - 130^{\circ} = 50^{\circ}$	1
	In Δ ECD, LEDC + LCED + LECD = 180° (ASP of a Δ le)	
	$LEDC + 50^{\circ} + L20^{\circ} = 180^{\circ}$, $LEDC = 180^{\circ} - 70^{\circ} = 110^{\circ}$	2
	LBDC = LEDC = 110 ⁰ (Angles in the same segment)	
	$LBAC = LBDC = 110^{\circ}$	1

	-3-	
26)	For Correct construction	3
	Steps of construction	1
27)	Diameter =10.5m ,Height = 3m	
	Volume of a heap $=\frac{\pi r^2 h}{3} = \frac{22 \times 10.5 \times 10.5 \times 3}{3 \times 7 \times 4} = 86.625 m^3$	2
	Volume of a heap $=\frac{\pi r^2 h}{3} = \frac{22 \times 10.5 \times 10.5 \times 3}{3 \times 7 \times 4} = 86.625m^3$ Slant height $l^2 h^2 + r^2 = (3)^2 + (\frac{10.5}{2})^2$ $l = 6.05m$	1
	Area of required canvas = $\pi r I = \frac{22}{7} \times \frac{10.5}{2} \times 6.05 = 99.825 m^2$	1
28)	Radius of a bowl = 7/2 =3.5 cm	
	Height of a bowl = 4 cm	
 	Volume of soup for 1 patient = $\pi r^2 h = 22/7 \times 3.5 \times 3.5 \times 4 = 154 cm^3$ Volume of a soup for 250 patients = 250 x 154 cm ³ = 38500cm ³⁼ 38500/1000 (11 = 1000cm ³)	1
	Volume of a soup for 250 patients = 250 x 154 cm ³ =38500cm ³⁻ 38500/1000 (1l = 1000cm ³) =38.5l	2
	Value is a person is kind hearted , caring ect.	1
29)	Let the height of the water level in a vessel be h cm	
	Volume of the rain water = (600x 400x 1) cm ³	
	Volume of water in the vessel= $\pi(20)^2$ x h cm ³	1
	According to the problem, (600x 400x 1) cm ³ = π (20) ² x h cm ³	2
	Height of the water level =($600 \times 400 \times 1$) /(3.14 \times (20)2) = 191 cm	1
30)	Preparing table of class marks and frequency tables of section A and B	1
	Drawing of frequency polygons in one graph	1 ½ each
31)	Let the number of boys =x , then the number of girls = 180-x	1/2
- /	Total weight of the students = weight of boys = weight of girls	
	$180 \times 50 = (60 \times x) + (180 - x) \times 45$	$1\frac{1}{2}$
	9000 = 60x = 8100 - 45 x	- 2
	60 x - 45 x = 900, $x = 60$	$1\frac{1}{2}$
	No .of boys = 60 no. of girls = 180-60 =120	1/2
		1/2
	<u>SECTION: E</u>	
	Theme-I (Planning a garden) (4+4+2)	
	a) Length along horizontal axis = 42 feet	
	Length of each pot = 18 inches = $\frac{3}{2}$ feet	
	Number of pots which can be placed along horizontal = $2x42x_3^2$ =56	
	Length along vertical axis =28 feet	
	Number of pots which can be along vertical =2x28x $\frac{2}{3}$ =36(app.)	
	Total pots = 56+36 = 92	
	Cost of pots = 92x250 = Rs. 23000	
	Cost of plants = 92x30 = Rs. 2760	
	b) (14, 0), (56, 0) , (56, 21), (70, 21), (70, 49), (56, 49), (56, 70), (14, 70), (14, 49), (0, 49), (0, 21) and (14, 21)	
	c) Minimum four hours of sunlight	