KENDRIYA VIDYALAYA SANGATHAN BENGALURU REGION

CLASS: IX
SUMMATIVE ASSESSMENT II (MARCH) 2013-14 MATHEMATICS

SET: 1

MAX.MARKS: 100
TIME: $3 \frac{1}{2}$ HOURS

MARKING SCHEME

	SECTION:A	MARKS
	1) (C) Infinitely many solutions \quad 2) (D) 120°	EACH 1 MARK
	3) (D) $\frac{32}{3} \pi r 3$ 4) (A) 1	
	SECTION:B	
5)	Any two correct solutions	Each 1 mark
6)	Let the cost of note book $=x$, the cost of a pen $=y$	1
	Liner equation : $x=2 y$ (or) $x-2 y=0$	1
7)	Correct figure	1/2
	Since $A C$ bisects $L A$ and L C in rectangle $A B C D, L 1=L 2=L 3=L 4$ then $A D=C D$	1
	Thus $A B C D$ is a square, so BD bisects LB as well as LD	1/2
8)	OM $\perp \mathrm{BC}, \mathrm{BM}=\mathrm{CM}(1)$	1
	OM $\perp A D, A M=D M(2)$ Perpendicular from centre bisects the chore	
	Subtracting (1) and (2) AM - BM = DM -CM , AB = CD	1
9)	Correct figure	1/2
	In II gm ABCD , L A = LC(1) opposite angles of a II gm ,	
	$L A+L C=180^{\circ} \quad$ opposite angles of a cyclic quadrilateral	
	$L A+L A=180^{\circ}$ from......(1)	
	$2 L A=180^{\circ}, L A=90^{\circ}$	1
	Therefore ABCD is a rectangle (in a II gm one of whose angles is 90°, is a rectangle)	1/2
10)	Radius of the cylindrical kaleidoscope $=3.5 \mathrm{~cm}$	
	Height of kaleidoscope (h) = 25cm	1
	Area of chart paper required =curved surface area of a cylindrical kaleidoscope	
	$=2 \pi r h=2 \times 22 / 7 \times 3.5 \times 25=550 \mathrm{~cm} 2$	1
	SECTION:C	
11)	Any two correct solutions	1 each
	Infinitely many, Through a point infinite lines can be drawn	$1 / 2$ each
12)	$A B C D$ is II gm ,D C IIAB Transversal BD intersects them at B and D	1/2
	Therefore LABD = LBDC alternate interior angles	
	In \triangle APB and $\triangle C Q D$,	
	$L A B P=L Q C D \quad$ (since $L A B D=L B D C)$	
	LAPB = LCQD (Each 90 ${ }^{\circ}$)	
	$A B=C D$ (OPP. Sides of a II gm)	
	Therefore $\triangle A P B \cong \triangle C Q D(B y ~ A A S ~) ~$	2
	$A P=C Q \quad(B Y C P C T)$	1/2
13)	Let BD Intersect EF at G	1/2
	In \triangle DAB, E is a mid -m point and E G IIAB	
	Then G is the mid -point of DB (By converse of mid-point theorem)	2
	In $\triangle B C D, G$ is the mid-point of BD and GFIIDC	
	So, F is the mid-point of BC (By converse of mid-point theorem)	1/2

	-2-	
14)	$B C E D$ is a II gm, BD =CE and BDII CE	
	$\operatorname{Ar}(\mathrm{DBC})=\operatorname{ar}(E B C)(1) \quad$ (Having same base BC and between the same IIs)	1
	In $\triangle A B C, B E$ is the median so $\operatorname{ar}(E B C)=1 / 2 \operatorname{ar}(A B C)$	1
	$\operatorname{Ar}(A B C)=\operatorname{ar}(E B C)+\operatorname{ar}(A B E), \operatorname{ar}(A B C)=2 \operatorname{ar}(E B C), \operatorname{ar}(A B C)=2 \operatorname{ar}(D B C) \quad$ FROM (1)	1
15)	Given , to prove, correct figure	1
	Correct proof	2
16)	Construction of a required figure with correct measurements	3
17)	Perimeter of a floor 2(I+b) $=260,1+b=130$	1/2
	Surface area of four walls $2 \mathrm{~h}(1+b)=2 \times 6 \times 130=1560 \mathrm{~m} 2$	1
	Cost of painting $=$ Rs (1560x 9) =Rs 14040	1/2
	Values depicted are co-operation ,concern etc	1
18)	Median is average of $5^{\text {th }}$ and $6^{\text {th }}$ terms	1
	$\frac{x+(x+2)}{2}=63, x=62$	2
19)	Arranging the data in ascending order	1
	Making table of class interval (11-20, 21-30 etc), tally marks and frequency	2
20)	i) More than 40 seeds $=3$, probability $=3 / 5$	1
	ii) 40 seeds in a bag $=0$, probability $=0$	1
	iii) More than 35 seeds $=5$, probability $=5 / 5=1$	1
	SECTION: D	
21)	Table of three ordered pairs	1
	Plotting the points on graph and drawing the graph	2
	The line cut the x-axis at (6,0) and y-axis at (0,4)	1
22)	$2 x+9=0, x=-9 / 2$ Or (-4.5), drawing number line on a graph and locating (-4.5) on it	2
	Equation in two variables is $2 x+0 . y+9=0$	1/2
	Plotting points on a graph using three ordered pairs	$1 \frac{1}{2}$
23)	Given, to prove ,construction correct figure	2
	proof	2
24)	Correct figure	1/2
	In $\triangle A B C, F$ is the mid-point of side $A B$ and E is the mid-point of side $A C$	
	So E F II BD (by mid-point theorem) , similarly ED II FB	
	Hence BDEF is a II gm , similarly we can prove that AFDE and FDCE are II gm s	1
	Since FD is a diagonal of II gm BDEF , ar(FBD) =ar(DEF)............(1)	
	Similarly ar(FAE) = ar(DEF)...(2)	
		1
	From 1, 2 and 3	
	$\operatorname{ar}(F B D)=\operatorname{ar}(F A E)=\operatorname{ar}(\mathrm{DCE})=\operatorname{ar}(\mathrm{DEF})$	
	Therefore $\operatorname{ar}(A B C)=4 \operatorname{ar}(\mathrm{DEF})$	
	$\Rightarrow \operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathrm{ABC})$	$1 \frac{1}{2}$
25)	LCED + LCEB $=180^{\circ}$ (Linear pair)	
	LCED + $130^{\circ}=180^{\circ}$, LCED $=180^{\circ}-130^{\circ}=50^{\circ}$	1
	In $\triangle E C D, L E D C+L C E D+L E C D=180^{\circ}$ (ASP of a $\triangle l e$)	
	$L E D C+50^{\circ}+L 20^{\circ}=180^{\circ}$, LEDC $=180^{\circ}-70^{\circ}=110^{\circ}$	2
	LBDC $=$ LEDC $=110^{\circ}$ (Angles in the same segment)	
	$\angle B A C=\angle B D C=110^{\circ}$	1

	-3-	
26)	For Correct construction	3
	Steps of construction	1
27)	Diameter $=10.5 \mathrm{~m}$, Height $=3 \mathrm{~m}$	
	Volume of a heap $=\frac{\pi r 2 h}{3} \quad=\frac{22 \times 10.5 \times 10.5 \times 3}{3 \times 7 \times 4}=86.625 \mathrm{~m}^{3}$	2
	Slant height $l^{2}=h^{2}+r^{2}=(3)^{2}+\left(\frac{10.5}{2}\right)^{2} \quad l=6.05 m$	1
	$\text { Area of required canvas }=\pi r l=\frac{22}{7} \times \frac{10.5}{2} \times 6.05=99.825 \mathrm{~m}^{2}$	1
28)	Radius of a bowl $=7 / 2=3.5 \mathrm{~cm}$	
	Height of a bowl $=4 \mathrm{~cm}$	
	Volume of soup for 1 patient $=\pi r^{2} h=22 / 7 \times 3.5 \times 3.5 \times 4 \quad=154 \mathrm{~cm}^{3}$	1
	$\begin{aligned} & \begin{array}{l} \text { Volume of a soup for } 250 \text { patients }=250 \times 154 \mathrm{~cm}^{3}=38500 \mathrm{~cm}^{3}=38500 / 1000 \quad\left(11=1000 \mathrm{~cm}^{3}\right) \\ =38.51 \end{array} \end{aligned}$	2
	Value is a person is kind hearted, caring ect.	1
29)	Let the height of the water level in a vessel be $h \mathrm{~cm}$	
	Volume of the rain water $=(600 \times 400 \times 1) \mathrm{cm}^{3}$	
	Volume of water in the vessel $=\pi(20)^{2} \times \mathrm{h} \mathrm{cm}{ }^{3}$	1
	According to the problem, $(600 \times 400 \times 1) \mathrm{cm}^{3}=\pi(20)^{2} \times \mathrm{h} \mathrm{cm}{ }^{3}$	2
	Height of the water level $=(600 \times 400 \times 1) /(3.14 \times(20) 2)=191 \mathrm{~cm}$	1
30)	Preparing table of class marks and frequency tables of section A and B	1
	Drawing of frequency polygons in one graph	$11 / 2$ each
31)	Let the number of boys $=x$, then the number of girls $=180-x$	1/2
	Total weight of the students = weight of boys $=$ weight of girls	
	$180 \times 50=(60 \times x)+(180-x) \times 45$	$1 \frac{1}{2}$
	$9000=60 x=8100-45 x$	
	$60 x-45 x=900, x=60$	1 $\frac{1}{2}$
	No. of boys $=60$ no. of girls $=180-60=120$	1/2
	SECTION: E	
	Theme-I (Planning a garden) (4+4+2) a) Length along horizontal axis $=42$ feet Length of each pot $=18$ inches $=\frac{3}{2}$ feet Number of pots which can be placed along horizontal $=2 \times 42 \times \frac{2}{3}=56$ Length along vertical axis $=\mathbf{2 8}$ feet Number of pots which can be along vertical $=2 \times 28 \times \frac{2}{3}=36$ (app.) Total pots $=56+36=92$ Cost of pots $=92 \times 250=$ Rs. 23000 Cost of plants = 92×30 = Rs. 2760 b) $(14,0),(56,0),(56,21),(70,21),(70,49),(56,49),(56,70),(14,70),$ $(14,49),(0,49),(0,21)$ and $(14,21)$ c) Minimum four hours of sunlight	

